92 research outputs found

    Room-Temperature Interconversion Between Ultrathin CdTe Magic-Size Nanowires Induced by Ligand Shell Dynamics

    Get PDF
    The formation mechanisms of colloidal magic-size semiconductor nanostructures have remained obscure. Herein, we report the room temperature synthesis of three species of ultrathin CdTe magic-size nanowires (MSNWs) with diameters of 0.7 ± 0.1 nm, 0.9 ± 0.2 nm, and 1.1 ± 0.2 nm, and lowest energy exciton transitions at 373, 418, and 450 nm, respectively. The MSNWs are obtained from Cd(oleate) 2 and TOP-Te, provided diphenylphosphine and a primary alkylamine (RNH 2) are present at sufficiently high concentrations, and exhibit sequential, discontinuous growth. The population of each MSNW species is entirely determined by the RNH 2 concentration [RNH 2] so that single species are only obtained at specific concentrations, while mixtures are obtained at concentrations intermediate between the specific ones. Moreover, the MSNWs remain responsive to [RNH 2], interconverting from thinner to thicker upon [RNH 2] decrease and from thicker to thinner upon [RNH 2] increase. Our results allow us to propose a mechanism for the formation and interconversion of CdTe MSNWs and demonstrate that primary alkylamines play crucial roles in all four elementary kinetic steps (viz., monomer formation, nucleation, growth in length, and interconversion between species), thus being the decisive element in the creation of a reaction pathway that leads exclusively to CdTe MSNWs. The insights provided by our work thus contribute toward unravelling the mechanisms behind the formation of shape-controlled and atomically precise magic-size semiconductor nanostructures

    Correction to "Luminescent Gold Nanocluster-Decorated Polymeric Hybrid Particles with Assembly-Induced Emission"

    Get PDF
    Correction to “Luminescent Gold Nanocluster-Decorated Polymeric Hybrid Particles with Assembly-Induced Emission

    Influence of carbon support surface modification on the performance of nickel catalysts in carbon dioxide hydrogenation

    Get PDF
    The interaction between metal nanoparticles and a support is of key importance in catalysis. In this study, we demonstrate that the introduction of oxygen- or nitrogen-containing support surface groups on a graphite nanoplatelet support influence the performance of nickel supported catalysts during CO2 hydrogenation. By careful design of the synthesis conditions, the Ni nanoparticle size of the fresh catalysts was not affected by the type of support surface groups. A combination of H2 chemisorption and high resolution TEM demonstrates that the available metal surface depends on the interaction with the carbon support. The amination treatment results in the weakest interaction between the Ni and the support, showing the highest initial Ni weight-based activity, although at the expense of nanoparticle stability. Hence initial enhancement in activity is not always optimal for long term catalysis. The use of carbon with a higher density of oxygen functional groups that are stable above 350 °C, is beneficial for preventing deactivation due to particle growth. Furthermore, small amounts of contaminants can have a substantial influence on the CH4 selectivity at low conversions

    Intra- and Interparticle Heterogeneities in Solid Activators for Single-Site Olefin Polymerization Catalysis as Revealed by Micro-Spectroscopy

    No full text
    Transition metal–zeolite composites are versatile catalytic materials for a wide range of industrial and lab-scale processes. Significant advances in fabrication and characterization of well-defined metal centers confined in zeolite matrixes have greatly expanded the library of available materials and, accordingly, their catalytic utility. In this review, we summarize recent developments in the field from the perspective of materials chemistry, focusing on synthesis, postsynthesis modification, (operando) spectroscopy characterization, and computational modeling of transition metal–zeolite catalysts

    Putative greigite magnetofossils from the Pliocene epoch

    No full text
    International audienc

    Electron tomography resolves a novel crystal structure in a binary nanocrystal superlattice

    No full text
    \u3cp\u3eThe self-assembly of different nanocrystals into a binary superlattice is of interest for both colloidal science and nanomaterials science. New properties may emerge from the interaction between the nanocrystal building blocks that are ordered in close contact in three dimensions. Identification of the superlattice structure including its defects is of key interest in understanding the electrical and optical properties of these systems. Transmission electron microscopy (TEM) has been very instrumental to reach this goal but fails for complex crystal structures and buried defects. Here, we use electron tomography to resolve the three-dimensional crystal structure of a binary superlattice that could not be resolved by TEM only. The structure with a [PbSe] \u3csub\u3e6\u3c/sub\u3e[CdSe]\u3csub\u3e19\u3c/sub\u3e stoichiometry has no analogue in the atomic world. Moreover we will show how tomography can overcome the clouding effects of planar defects on structure identification by TEM.\u3c/p\u3

    Highly Luminescent Water-Dispersible NIR-Emitting Wurtzite CuInS<sub>2</sub>/ZnS Core/Shell Colloidal Quantum Dots

    No full text
    Copper indium sulfide (CIS) quantum dots (QDs) are attractive as labels for biomedical imaging, since they have large absorption coefficients across a broad spectral range, size- and composition-tunable photoluminescence from the visible to the near-infrared, and low toxicity. However, the application of NIR-emitting CIS QDs is still hindered by large size and shape dispersions and low photoluminescence quantum yields (PLQYs). In this work, we develop an efficient pathway to synthesize highly luminescent NIR-emitting wurtzite CIS/ZnS QDs, starting from template Cu<sub>2‑<i>x</i></sub>S nanocrystals (NCs), which are converted by topotactic partial Cu<sup>+</sup> for In<sup>3+</sup> exchange into CIS NCs. These NCs are subsequently used as cores for the overgrowth of ZnS shells (≤1 nm thick). The CIS/ZnS core/shell QDs exhibit PL tunability from the first to the second NIR window (750–1100 nm), with PLQYs ranging from 75% (at 820 nm) to 25% (at 1050 nm), and can be readily transferred to water upon exchange of the native ligands for mercaptoundecanoic acid. The resulting water-dispersible CIS/ZnS QDs possess good colloidal stability over at least 6 months and PLQYs ranging from 39% (at 820 nm) to 6% (at 1050 nm). These PLQYs are superior to those of commonly available water-soluble NIR-fluorophores (dyes and QDs), making the hydrophilic CIS/ZnS QDs developed in this work promising candidates for further application as NIR emitters in bioimaging. The hydrophobic CIS/ZnS QDs obtained immediately after the ZnS shelling are also attractive as fluorophores in luminescent solar concentrators
    • …
    corecore